
A Fisher/KPP-type equation with density-dependent diffusion and convection: travelling-wave

solutions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2005 J. Phys. A: Math. Gen. 38 3367

(http://iopscience.iop.org/0305-4470/38/15/009)

Download details:

IP Address: 171.66.16.66

The article was downloaded on 02/06/2010 at 20:09

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/38/15
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 38 (2005) 3367–3379 doi:10.1088/0305-4470/38/15/009

A Fisher/KPP-type equation with density-dependent
diffusion and convection: travelling-wave solutions

B H Gilding1 and R Kersner2

1 Department of Mathematics and Statistics, College of Science, Sultan Qaboos University,
Al-Khodh, Oman
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Abstract
This paper concerns processes described by a nonlinear partial differential
equation that is an extension of the Fisher and KPP equations including density-
dependent diffusion and nonlinear convection. The set of wave speeds for which
the equation admits a wavefront connecting its stable and unstable equilibrium
states is characterized. There is a minimal wave speed. For this wave speed
there is a unique wavefront which can be found explicitly. It displays a sharp
propagation front. For all greater wave speeds there is a unique wavefront which
does not possess this property. For such waves, the asymptotic behaviour as
the equilibrium states are approached is determined.

PACS numbers: 87.23.Cc, 47.54.+r, 82.40.Ck

1. Introduction

A characteristic of a huge number of biological, chemical and physical phenomena is that
in the course of time a spatio-temporal pattern develops from a state that does not initially
exhibit any structure. In many instances, the population density or concentration will evolve
into a spatial profile which does not appear to change shape with time, yet moves with a
well-defined velocity. By its very nature, such a phenomenon indicates the formation of a
travelling wave. One of the many challenges involved in mathematically modelling biological,
chemical, physical and other processes is identifying whether or not the model can simulate the
occurrence of such a wave. Should this be the case, there is the further challenge of predicting
the shape and velocity of the travelling wave, and relating this to the spatio-temporal pattern
being observed in practice.

Many models in the form of nonlinear partial differential equations—the linear diffusion
equation with logistic growth is an example par excellence—admit travelling-wave solutions
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with a continuous spectrum of wave speeds. In such situations, the task of identifying the
travelling wave being observed is far from simple. One has in some way to determine the
range of admissible speeds, and to find the features that distinguish one travelling wave from
another, as precisely as possible.

The aim of this paper is to carry out the just-described programme for the substantial
model embodied in the partial differential equation

ut + bukux = (aukux)x + cu(1 − uk), (1)

where a � 0, b, c � 0, and k > 0 are constants. The unknown (density or concentration)
u is non-negative, x is a space coordinate, and t denotes time. Subscripts denote partial
differentiation with respect to the relevant variable. The first term on the right-hand side of
the equation corresponds to a diffusive process with a diffusion coefficient which depends on
the unknown. The second term on the left-hand side represents convection with a velocity
function which likewise depends on the unknown. The last term in the equation is a reaction
term.

Equation (1) arises in the study of pattern formation by bacterial colonies exemplified by
the growth of bacteria of the type Paenbacillus dendritiformis on a thin layer of agar in a Petri
dish [1]. These bacteria cannot move on a dry surface, and produce a layer of lubricating fluid
in which they swim. In a uniform layer of liquid, bacterial swimming is a random process
which can be approximated by diffusion. The lubrication fluid flows by convection caused
by motion of the bacteria and diffusion. The availability of nutrients affects the reproduction
of bacteria, the production of lubricating fluid, and the withdrawal of bacteria into a pre-
pore state. The bacteria consume the nutrients. A continuum approach to the dynamics
leads to a model comprising three coupled reaction–diffusion equations with unknowns: the
density of the bacteria u, the height of the lubrication layer v, and the available nutrient w,
respectively. Considering the density of bacteria in the pre-pore state optionally gives rise to a
fourth equation. Under simplifying assumptions, the variable v can be eliminated. This leads
[1, p 242] to the equation for the bacterial field ut = ∇ · (auk∇u) + c, where ∇ denotes the
standard differential operator in two space dimensions, and c the nett effect of reproduction
and withdrawal of bacteria. The term c vanishes when u = 0, and depends monotonically on
w in such a way that it is a source when w exceeds some critical nutrient level and a sink when
w falls below this level. When chemotaxis is taken into account, the equation becomes

ut = ∇ · (auk∇u − b0u
k+1X(z)∇z) + c,

where z denotes the concentration of the chemical responsible for the chemotaxis, X(z)∇z the
chemical gradient sensed by the bacteria, and b0 a constant which is positive for attraction and
negative for repulsion [1, p 243]. Assuming that the motion is unidimensional, the chemical
gradient is uniform, and c := cu(1−uk) gives rise to equation (1). This reaction term embodies
the properties described previously under the simplifying assumption that the nutrient level is
appropriately related to the bacterial density. The value of the bacterial density corresponding
to the critical nutrient level is normalized to u = 1.

With one or more terms omitted, and with one or more terms replaced by alternative
expressions, equation (1) is found in many other areas of application including chemical
reaction, combustion, thermal waves in plasma, population dynamics, and ecology [2–5].

Mathematically, equation (1) may be classified as of quasilinear degenerate second-order
parabolic type for a > 0, and, of quasilinear first-order type for a = 0 and b �= 0. Moreover,
in both instances, when c = 0 it is a nonlinear conservation law. As special cases, the
equation includes the Fisher/KPP equation with nonlinear diffusion (a > 0, b = 0, c > 0),
the degenerate Burgers equation (a > 0, b �= 0, c = 0), and, a first-order partial differential
equation with reaction (a = 0, c > 0). When a > 0 and b �= 0, one may normalize the
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equation by suitably scaling the independent variables x and t so that a = b = 1. Similarly, if
a > 0 and c > 0 one may scale the independent variables so that a = c = 1, and, if b �= 0
and c > 0 one may normalize the equation in such a way that b = c = 1.

Equation (1) admits two equilibrium solutions when c > 0, namely an unstable solution
u ≡ 0 and a stable one u ≡ 1. In order to study the propagation of the unstable state into the
stable one, we look for travelling-wave (TW) solutions

u(x, t) = f (ξ), where ξ = x − σ t (2)

and σ is the wave speed, satisfying

f (ξ) → 0 as ξ → ∞ (3)

and

f (ξ) → 1 as ξ → −∞. (4)

Substituting (2) into (1) leads to the ordinary differential equation

(af kf ′)′ + (σ − bf k)f ′ + cf (1 − f k) = 0. (5)

Practically all the main questions related to such TWs were formulated already in 1937
[6, 7] in connection with Fisher/KPP equation,

ut = uxx + u(1 − u). (6)

(1) Are there σ for which problem (3)–(5) has a solution?
(2) If the answer to the previous question is yes for all σ � σc, what is the value of the

minimal speed σc?
(3) Is the TW with minimal speed an attractor?

The answer for equation (6) is the following: a TW exists if and only if σ � 2, i.e. σc = 2,
and, for appropriate classes of initial data the solution of the initial-value problem converges
to the TW with minimal speed as t → ∞ in both form and speed.

The answer to the first two questions above has been extended to the more general equation

ut + buux = uxx + u(1 − u). (7)

There holds σc = 2 for b � 2 and σc = b/2 + 2/b for b > 2 [2, 5]. To the best of the authors’
knowledge, the answer to the third question for b �= 0 is not yet known.

The equation

ut = (ukux)x + u(1 − uk) (8)

is rather well studied at present. The first two questions have been treated in [5, 8–13], the third
one for different classes of initial data in [13–15]. Further results on equation (8) can be found
in [16]; for instance, it can be transformed to a purely diffusive process in an inhomogeneous
medium.

In this paper we address the impact of nonlinear convection on the nonlinear diffusion–
reaction process (8), dealing with the first two questions concerning TWs. The third question
is investigated in [15].

Our main result is the following.

Theorem 1. Suppose that a > 0, c > 0 and k > 0. Let

σ ∗ := b +
√

b2 + 4(k + 1)ac

2(k + 1)
.

Then, modulo translation, problem (3)–(5) has a unique solution f for every σ � σ ∗ and no
solution for σ < σ ∗.
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(a) When σ = σ ∗, f is a sharp front, i.e. the support of f is bounded above, and, modulo
translation,

f (ξ) =
{[

1 − exp
(

σk
a

ξ
)]1/k

for ξ < 0

0 for ξ � 0.

(b) When σ > σ ∗, f is positive, strictly monotonic,

(ln{1 − f })′(ξ) → 2kc

σ − b +
√

(σ − b)2 + 4kac
as ξ → −∞,

and,

(ln f )′(ξ) → − c

σ
as ξ → ∞.

Corollary 1. Suppose that a > 0, c > 0 and k > 0. Let

σ ∗∗ := b −
√

b2 + 4(k + 1)ac

2(k + 1)
.

Then, modulo translation, equation (5) has a unique solution f satisfying

f (ξ) → 0 as ξ → −∞ and f (ξ) → 1 as ξ → ∞ (9)

for every σ � σ ∗∗ and no such solution for σ > σ ∗∗.

(a) When σ = σ ∗∗, f is a sharp front, i.e. the support of f is bounded below, and, modulo
translation,

f (ξ) =
{[

1 − exp
( − |σ |k

a
ξ)

)]1/k
for ξ > 0

0 for ξ � 0.

(b) When σ < σ ∗∗, f is positive, strictly monotonic,

(ln f )′(ξ) → c

|σ | as ξ → −∞,

and,

(ln{1 − f })′(ξ) → − 2kc

|σ | + b +
√

(|σ | + b)2 + 4kac
as ξ → ∞.

Remark 1. The TWs with σ > σ ∗ are classical solutions (even real analytic). The sharp front
with minimal speed σ = σ ∗ is not smooth. In particular, when k � 1, it is merely Hölder
continuous with exponent 1/k at ξ = 0. Nonetheless, f k+1 is continuously differentiable
everywhere. So, in terms of applications, the flux is continuous, and this TW is a weak
solution in the usual mathematical sense.

Remark 2. The result holds for b = 0. In this case, σ ∗ = √
ac/(k + 1).

Remark 3 (conjecture). Considering the Cauchy problem for equation (1) with initial data
that are non-negative, not identically zero, and have compact support, theorem 1 and its
corollary suggest that the solution will be such that its positivity set with respect to the spatial
variable becomes connected, with a lower boundary which moves to the left with a speed
which approaches σ ∗∗ and an upper boundary which moves to the right with a speed which
approaches σ ∗, as time tends to infinity. Comparison principle arguments using the TWs
readily confirm that the positivity set cannot grow any faster.
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Table 1. Parameters which determine the asymptotic behaviour of a TW of equation (10) whereby
σc and b∗ are as stated in proposition 1.

σ m + p b β �

σ = σc = 0 m + p > 2k + 1 b < b∗ m + p − k − 1 c
|b|

b = b∗ k |b|
(k+1)a

m + p = 2k + 1 b � b∗ k |b|−
√

b2−(b∗)2

2(k+1)a

σ = σc > 0 m + p > 1 0 σ
a

m + p = 1 0 σ+
√

σ 2−4ac

2a

σ > σc m + p > 1 m + p − 1 c
σ

m + p = 1 0 σ−
√

σ 2−4ac

2a

Results in analogy to theorem 1 can be obtained for the more general equation

ut + bukux = (aumux)x + cup(1 − uq) (10)

with a > 0, b, c > 0, k > 0,m, p, and q > 0 constants.

Proposition 1. Suppose that a > 0, c > 0, k > 0 and q > 0. When m + p < 1, equation (10)
has no TWs satisfying (3) and (4). When m + p � 1, there is such a TW if and only if σ � σc

for some number σc which depends only on ac, b, k,m + p and q; in which case, modulo
translation, the TW f is unique. With regard to the minimal speed, if m + p � 2k + 1, there
exists a number b∗ < 0, which depends only on ac, k,m + p and q, such that σc = 0 for
b � b∗ and σc > 0 for b > b∗. On the other hand, if m + p < 2k + 1, necessarily σc > 0. In
particular, if m + p = 1, then σc � 2

√
ac. Concerning the asymptotic behaviour of the TW,

(ln{1 − f })′(ξ) → 2qc

σ − b +
√

(σ − b)2 + 4qac
as ξ → −∞,

and, with β � 0 and � > 0 as shown in table 1, the following holds.

(a) If m > β, f is a sharp front, and,

(f m−β)′(ξ) → −(m − β)� as ξ ↑ ξ ∗,

where ξ ∗ denotes the least upper bound of the support.
(b) If m = β, f is positive, strictly monotonic and,

(ln f )′(ξ) → −� as ξ ↑ ∞.

(c) If m < β, f is positive, strictly monotonic, and,

(f −(β−m))′(ξ) → (β − m)� as ξ ↑ ∞.

The outstanding feature of (1) is that for this specific instance of equation (10), both the
minimal speed σc and the corresponding TW can be obtained explicitly.

Other instances of equation (10) for which the minimal speed and a TW can be found
explicitly are given below. The rider ‘for ξ < 0’ implies that the TW f is a sharp front, with
f (ξ) = 0 for ξ � 0.

Proposition 2. For any equation of the form

ut + bukux = (aumux)x + cuk+1−m(1 − uk),

there holds σc = σ ∗.
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(i) When m = k/2 and σ = σ ∗,

f (ξ) =
[

tanh

(
−σk

2a
ξ

)]2/k

for ξ < 0.

(ii) When m = 0 and σ = σ ∗,

f (ξ) =
[

1 + exp

(
σk

a
ξ

)]−1/k

.

Proposition 3. For

ut + bukux = (aumux)x + cu1−m(1 − uk),

there holds

σc =
{

2
√

ac if b � (k + 1)
√

ac

b/(k + 1) + (k + 1)ac/b if b > (k + 1)
√

ac.

(i) When m = k, b > 0 and σ = b/(k + 1) + (k + 1)ac/b,

f (ξ) =
[

1 − exp

(
kb

(k + 1)a
ξ

)]1/k

for ξ < 0.

(ii) When m = k/2, b > 0 and σ = b/(k + 1) + (k + 1)ac/b,

f (ξ) =
[

tanh

(
− kb

2(k + 1)a
ξ

)]2/k

for ξ < 0.

(iii) When m = 0, b > 0 and σ = b/(k + 1) + (k + 1)ac/b,

f (ξ) =
[

1 + exp

(
kb

a(k + 1)
ξ

)]−1/k

.

The above proposition extends the results mentioned for equation (7).

Proposition 4. For

ut + bukux = (aumux)x + cu1−m(1 − u2k),

there holds

σc =
{

2
√

ac if b � k
√

ac

σ ∗ + ac/σ ∗ if b > k
√

ac.

(i) When m = k and σ = σ ∗ + ac/σ ∗,

f (ξ) =
[

1 − exp

(
σ ∗k
a

ξ

)]1/k

for ξ < 0.

(ii) When m = k/2 and σ = σ ∗ + ac/σ ∗,

f (ξ) =
[

tanh

(
−σ ∗k

2a
ξ

)]2/k

for ξ < 0.

(iii) When m = 0 and σ = σ ∗ + ac/σ ∗,

f (ξ) =
[

1 + exp

(
σ ∗k
a

ξ

)]−1/k

.
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2. The integral equation method

Until recently the only line of attack on problems such as (3)–(5) was phase-plane analysis.
The first convincing illustration is the previously mentioned paper [7] of 1937. The substitution
P(f ) = −af kf ′ in (5) leads to

P ′ = σ − bf k − ac
f k+1(1 − f k)

P
,

and one has to deal with a very strong possible non-existence and non-uniqueness (the right-
hand side is not only not Lipschitz continuous with respect to P, it even becomes unbounded
as P → 0). We transfer this singular equation to an integral equation and deal with it in a
purely analytic way. As a first step, we show the following.

Lemma 1. Any solution f of problem (3)–(5) is monotonic and such that

a(f k+1)′(ξ) → 0 as ξ → ±∞. (11)

To justify the above, we adapt a standard argument [17]. Recalling that we are dealing with
the case a > 0 and c > 0, we write (5) in the form

F ′ + cf (1 − f k) = 0, (12)

where

F := a

k + 1
(f k+1)′ + σf − b

k + 1
f k+1, (13)

and assume that f k+1 and F are continuously differentiable. We note that since f is non-
negative and satisfies (3), necessarily 0 � f (ξ) � 1 for all sufficiently large ξ . So, by (12), F
is non-increasing for all such ξ . Combining this deduction with (3), it follows from (13) that
(f k+1)′(ξ) → L as ξ → ∞ for some −∞ � L < ∞. However, integrating this deduction, it
is easily checked that it violates (3) unless L = 0. Thus, the part of (11) relating to ξ → ∞ is
justified. Moreover, F(ξ) → 0 as ξ → ∞. Next, we observe that the derivatives f ′ and f ′′

exist classically wherever f > 0. Hence, if f ′ = 0 at any point where f > 0, (5) implies that
af kf ′′ = −cf (1 − f k). So, f cannot have a maximum where f > 1, nor a minimum where
0 < f < 1. Furthermore, f cannot have an extremum of either kind where f = 1, since
given f ′ = 0 and f = 1, local uniqueness for solutions of ordinary differential equations
such as (5) implies f ≡ 1, and this violates (3). Taking the previous deductions together, f

will be monotonic unless there exists an interval (ξ0, ξ1) with −∞ < ξ0 < ξ1 � ∞, such
that 0 < f < 1 on (ξ0, ξ1), f (ξ0) = F(ξ0) = 0, and, f (ξ) → 0 and F(ξ) → 0 as ξ ↑ ξ1.
However, in this event, integrating (12) from ξ0 to ξ1, yields

∫ ξ1

ξ0
cf (1 − f k) dξ = 0. This

gives a contradiction, wherewith the monotonicity is proven. Hereafter, (12) implies that F is
non-increasing everywhere. From this and (4) it follows that (f k+1)′(ξ) → L as ξ → −∞
for some −∞ < L � ∞. Arguing as before necessitates L = 0. Herewith, the lemma is
justified.

Since any solution of problem (3)–(5) is monotonic on (−∞,∞), it is a wavefront.
Therewith it falls within the scope of a theory developed in [5, 18, 19] for studying monotonic
TWs of reaction–convection–diffusion equations of the class

ut = (a(u))xx + (b(u))x + c(u) (14)

using a singular integral equation. The hypotheses required of the coefficients in this theory are
minimal. Notwithstanding, rather than describing the full theory here, we confine ourselves
to those results which are relevant to the problem in hand.
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0 µ δ s

θ

ν

θ

Figure 1. One parameter family of solutions of the integral equation.

Suppose that a is continuously differentiable on [0, 1] with a′(u) > 0 for 0 < u < 1, that
b is continuously differentiable on [0, 1] with b(0) = 0, and, c is continuous on [0, 1] with
c(0) = c(1) = 0 and c(u) > 0 for 0 < u < 1. Under these hypotheses, it has been shown
[5, 18, 19] that the set of wave speeds σ for which equation (14) admits a wavefront solution f

satisfying (3) and (4) is either empty or an interval [σc,∞) for some number σc. Furthermore,
in the latter case, for every σ ∈ [σc,∞) this wavefront solution is unique except with respect
to translation. The foundation of these results is the deeper finding that equation (14) admits
a wavefront solution satisfying (3) and (4) if and only if the integral equation

θ(s) = σs + b(s) −
∫ s

0

c(r)a′(r)
θ(r)

dr (15)

has a solution θ on [0, 1] which is positive on (0, 1) and such that θ(1) = 0. Assuming that
f (0) = α for some 0 < α < 1, the wavefront solution f is then given by

f (ξ) = 1 for ξ � ξ−,
(16)∫ α

f (ξ)

a′(s)
θ(s)

ds = ξ for ξ− < ξ < ξ+,

and

f (ξ) = 0 for ξ � ξ+, (17)

where

ξ− = −
∫ 1

α

a′(s)
θ(s)

ds and ξ+ =
∫ α

0

a′(s)
θ(s)

ds.

This finding can be interpreted in terms of the traditional approach discussed at the start of
this section, by the identification of P(f ) with θ(s). In this context, (11) is equivalent to
θ(0) = θ(1) = 0. The wavefront f will be a sharp front if and only if ξ+ is finite.

With regard to solving (15), under the hypotheses stated, the following is known. Either
the equation has no solution, or it has a one parameter family of solutions which contains
a member that can characterized as maximal. To be more precise, let us suppose that the
equation has at least one solution on an interval [0, δ] for some 0 < δ � 1. Then, in this event,
it has a particular solution θ on [0, δ] with the following properties. Given any 0 < µ < δ,
(15) has a unique solution on [0, µ] that is positive on (0, µ) and vanishes at s = µ. Given
any 0 � ν � θ(δ), (15) has a unique solution on [0, δ] that is positive on (0, δ) and equal to
ν at s = δ. Equation (15) has no other solutions. Except in 0, none of the aforementioned
solutions intersect. Consequently, they are successively ordered by the parameters µ and ν,
and, with respect to this ordering, θ is maximal. See figure 1.
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0 δ0 δ1 1

θ

θ0

θ1

Figure 2. Ordering of maximal solutions of the integral equation.

On top of the above, if for some number σ0, equation (15) has a solution on an interval
[0, δ0] with 0 < δ0 � 1, then for any number σ1 > σ0 the equation has a solution on an
interval [0, δ1] with δ0 � δ1 � 1, and, δ1 > δ0 if δ0 < 1. Moreover, if θ0 and θ1 denote the
corresponding maximal solutions there holds θ1 > θ0 on (0, δ0]. See figure 2.

It follows from the previous remarks that the critical wave speed σc can be characterized
as the smallest number σ for which (15) has a solution on [0, 1]. Moreover, for any σ > σc,
the solution θ that gives rise to the wavefront solution f cannot be the maximal solution of
the integral equation.

3. The proof of the main theorem and its corollary

In the present context, the integral equation (15) reads

θ(s) = σs − b

k + 1
sk+1 − ac

∫ s

0

rk+1(1 − rk)

θ(r)
dr, (18)

while (16) becomes∫ α

f (ξ)

sk

θ(s)
ds = ξ

a
for ξ− < ξ < ξ+, (19)

with

ξ− = −a

∫ 1

α

sk

θ(s)
ds and ξ+ = a

∫ α

0

sk

θ(s)
ds. (20)

The key to theorem 1 is an explicit solution of the particular integral equation (18) with
fortuitous properties. This is the function

θ∗(s) := σ ∗s(1 − sk).

By substitution it can easily be verified to solve (18) for σ = σ ∗. From this and the general
results described in the previous section, it follows immediately that the set of numbers σ for
which (3)–(5) has a solution is an interval [σc,∞) with σc � σ ∗, and, that for every σ � σc

problem (3)–(5) has a unique solution modulo translation. Furthermore, recalling (17), (19)
and (20), when σ = σ ∗ the solution is as stated in part (a) of the theorem.

To prove theorem 1 the tasks remaining are therefore to show that σc = σ ∗ and that for
σ > σ ∗ the solution f has the behaviour indicated. To fulfil these tasks, we determine some
additional properties of solutions of the integral equation (18).

The first property we use is that for any σ > 0, equation (18) has a maximal solution θ

on [0, δ] for some 0 < δ � 1, and,

θ(s) ∼ σs as s ↓ 0. (21)
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To show this we fix 0 < ε < σ and consider the function ϑ(s) := (σ − ε)s. It can be verified
that ϑ satisfies (18) if σs − b

k+1 sk+1 is replaced by

B(s) := (σ − ε)s +
ac

σ − ε

(
sk+1

k + 1
− s2k+1

2k + 1

)
.

Moreover, σs − b
k+1 sk+1 � B(s) for all 0 � s � δ, if 0 < δ � 1 is chosen small enough. So by

a comparison principle for solutions of integral equations of type (15), our equation (18) has a
maximal solution θ � ϑ on [0, δ]. This gives the existence result, and lim infs↓0 θ(s)/s � σ

in view of the arbitrariness of ε. On the other hand, it is immediate from (18) that any solution
θ is such that lim sups↓0 θ(s)/s � σ . Together this yields (21).

The second property we employ is that given any δ > 0 and γ > 0, equation (18) has at
most one solution θ satisfying

θ(s) � γ s for all 0 � s � δ. (22)

To see this, we suppose that there exists a γ > 0 and two solutions θ1 and θ2 on some interval
[0, δ] such that θi(s) � γ s for 0 � s � δ and i = 1, 2. Then using (18) we compute that

|θ1 − θ2| (s) � ac

∫ s

0

rk+1(1 − rk) |θ1(r) − θ2(r)|
θ1(r)θ2(r)

dr

� ac

(
δk

k
− δ2k

2k

)
1

γ 2
max{|θ1 − θ2| (r) : 0 � r � δ}

for all 0 < s � δ. Hence, if δ is sufficiently small, θ1 ≡ θ2 on [0, δ]. Thus, there cannot be
two different solutions satisfying (18). It follows that for σ > 0 the maximal solution θ is the
only solution of (18) that satisfies an inequality of the type (22).

The last property of solutions of (18) that we need is the following. For σ > 0, any
solution θ �≡ θ is such that

θ(s) ∼ ac

σ
sk+1 as s ↓ 0. (23)

To confirm this, we consider the functions ϑ±(s) := ac
σ∓ε

sk+1, where 0 < ε < σ . By
substitution it can be verified that each of these functions satisfies (18) if σs − b

k+1 sk+1 is
replaced by

B(s) := (σ ∓ ε)s +

(
ac

σ ∓ ε
− σ ∓ ε

k + 1

)
sk+1.

Furthermore, s �→ σs − b
k+1 sk+1 − B(s) is strictly monotonic on [0, δ] if 0 < δ � 1 is

small enough. Subsequently, by comparison principle arguments for the general integral
equation (15), θ and ϑ± can have at most one point of intersection on (0, δ] for such δ. Let us
now suppose that θ > ϑ+ on (0, δ0) for some 0 < δ0 � δ. Then substituting θ(r) > ϑ+(r)

in the right-hand side of (18), we deduce that θ(s) > εs − b−σ+ε
k+1 sk+1 for all 0 < s < δ0.

However, from the previous paragraph, we know that the maximal solution θ is the only
solution that can satisfy this inequality. Thus, we must have θ < ϑ+ on (0, δ1) for some
0 < δ1 � δ. Alternatively, supposing that θ < ϑ− on (0, δ0) for some 0 < δ0 � δ, substituting
θ(r) < ϑ−(r) on the right-hand side of (18), we deduce that θ(s) < −εs − b−σ−ε

k+1 sk+1 for
all 0 < s < δ0. This contradicts the positivity of θ(s) for small s. So, together, there
holds ϑ− < θ < ϑ+ on (0, δ2) for some 0 < δ2 � δ. In view of the arbitrariness of ε,
this gives (23).

We are now in a position to show that σc = σ ∗. The argument is as follows. Suppose, to
the contrary, that σc < σ ∗. Then according to the general theory, the explicit solution θ∗(s)
of the integral equation (18) with σ = σ ∗, which is positive on (0, 1) and vanishes at s = 1,
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cannot be the maximal solution of the integral equation for this specific value of σ . Hence,
by the previous paragraph, θ∗ must satisfy (23). On the other hand, elementary computation
shows that θ∗ conforms to (21). Thus, we have a contradiction. The only option is to concede
that σc = σ ∗.

To complete the proof of the theorem we use the information that for every σ > σc the
solution θ(s) of (18) which is positive on (0, 1) and vanishes at s = 1 cannot be the maximal
solution θ(s) of this equation. Therefore, it satisfies (23). At the other extreme, defining
�(s) := θ(1 − s), we deduce that � solves the integral equation

�(s) = −σs +
b

k + 1
{1 − (1 − s)k+1} + ac

∫ s

0

(1 − r)k+1{1 − (1 − r)k}
�(r)

dr

on [0, 1]. Due to the change in sign of the integral term, this equation has a unique solution
�. A comparison argument similar to those we have previously performed reveals that

�(s) ∼ 2kac

σ − b +
√

(σ − b)2 + 4kac
s as s ↓ 0.

Putting these conclusions in (19) and (20) gives the behaviour of f reported in part (b) of the
theorem.

The corollary follows from the theorem through the observation that if f is a solution of
(5) satisfying (9) then f̂ (ξ) := f (−ξ) is a solution of problem (3)–(5) with b and σ replaced
by b̂ := −b and σ̂ := −σ , respectively.

4. Other cases

When a > 0 and c = 0, (12) implies that F defined by (13) must be constant. An argument
similar to that used previously subsequently gives (11) in this case too. Hence, recalling (3) and
(4), we must have F ≡ σ −b/(k+1) = 0. Thus, σ = b/(k+1), and, a(f k+1)′ = −bf (1−f k).
Observing that the derivative f ′ exists classically wherever f > 0, this yields the following.

Theorem 2. Suppose that a > 0, c = 0 and k > 0.

(i) If b � 0 then problem (3)–(5) has no solution.
(ii) If b > 0, then, modulo translation, problem (3)–(5) has a unique solution f for

σ = b/(k + 1) and no solution for σ �= b/(k + 1). When it exists, f satisfies the
conclusions of part (a) of theorem 1.

When a = 0 and c > 0, equation (5) is nothing more than a first-order ordinary differential
equation. Observing that if f is a solution, f ′ exists classically wherever σ − bf k �= 0, we
deduce that any solution satisfying (3) and (4) must be such that σ −bf k > 0 where 0 < f < 1.
Furthermore, in such a region we can rewrite the equation as(

σ

f
− (b − σ)f k−1

1 − f k

)
f ′ = −c.

This gives the following.

Theorem 3. Suppose that a = 0, c > 0 and k > 0.

(i) If b < 0 then, modulo translation, problem (3)–(5) has a unique solution f for σ � 0 and
no solution for σ < 0. When σ = 0, f satisfies the conclusions of part (a) of theorem 1
with σk

a
replaced by kc

|b| . Otherwise, it satisfies those of part (b).
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(ii) If b = 0, then, modulo translation, problem (3)–(5) has a unique solution f for σ > 0
and no solution for σ � 0. When it exists, modulo translation,

f (ξ) =
[

1 + exp

(
ck

σ
ξ

)]−1/k

.

(iii) If b > 0 then, modulo translation, problem (3)–(5) has a unique solution f for σ � b

and no solution for σ < b. When σ = b, the support of 1 − f is bounded below, and,
modulo translation,

f (ξ) =
{

1 for ξ � 0

exp
(− c

b
ξ
)

for ξ > 0.

Otherwise, f satisfies the conclusions of part (b) of theorem 1.

The existence results contained in parts (i) and (iii) of the above theorem are covered among
other results in [20].
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Série Internationale Section A Mathématiques et Mécanique 1 1–25
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[14] Biró Z 2002 Stability of travelling waves for degenerate reaction–diffusion equations of KPP-type

Adv. Nonlinear Stud. 2 357–71



A Fisher/KPP-type equation: travelling-wave solutions 3379

[15] Kamin S and Rosenau P 2004 Emergence of waves in a nonlinear convection-reaction-diffusion equation Adv.
Nonlinear Stud. 4 251–72

[16] Rosenau P 2002 Reaction and concentration dependent diffusion model Phys. Rev. Lett. 88 194501-1–4
[17] Fife P C and McLeod J B 1977 The approach of solutions of nonlinear diffusion equations to travelling front

solutions Arch. Rat. Mech. Anal. 65 335–61
[18] Gilding B H 1993 A singular nonlinear Volterra integral equation J. Integral Eqns. Appl. 5 465–502
[19] Gilding B H 1996 The correspondence between travelling-wave solutions of a nonlinear reaction-convection-

diffusion equation and an integral equation Differ. Integral Eqns. 9 919–47
[20] Mascia C 1997 Travelling wave solutions for a balance law Proc. R. Soc. Edinburgh A 127 567–93


